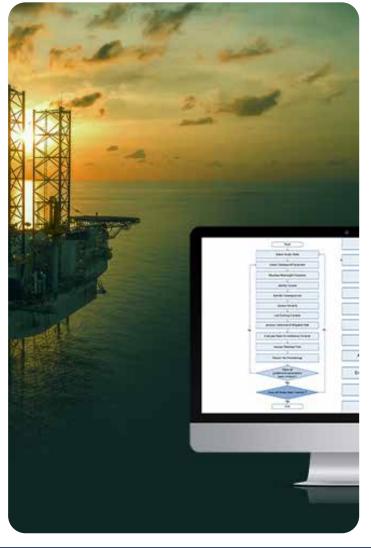


## Hazard & Operability (HAZOP) Study

Hazard and Operability (HAZOP) study is a structured hazard identification technique using a multi-disciplinary team for the identification of process hazards with respect to the design and operation of a facility. The study identifies deviations from process boundaries and records its consequences, safeguards and recommendations.

At Velosi, HAZOP is used as a technique to identify potential hazards in a system and to analyze operability problems that may result in nonconforming products. HAZOP is generally based on a theory that concludes risk events are caused by deviations from design or operating intentions.


Identifying such deviations is usually facilitated by utilizing sets of 'guide words' as a methodical list of deviation perspectives. This particular approach is an exceptional feature of the HAZOP methodology that enables to stimulate the imagination of the team members while examining potential deviations.

### As a risk evaluation tool, HAZOP is defined as:

- A brainstorming method
- A qualitative risk evaluation technique
- An inductive risk assessment method, also known as a 'bottom-up' risk identification approach, where success relies on the capability of subject matter experts (SMEs) to anticipate deviations based on past experiences and general subject matter expertise.

## **Benefits of HAZID**

- Reveals hazards at an early stage, before they occur.
- Hazards are properly recorded, managed, or diminished.
- Controllable preventive measures.
- Avoids budget overruns.
- Establishes hazard screening criteria.
- Helps document non-critical hazards that may be ignored.





# HAZOP is ideal to assess hazards in facilities, equipment & processes is best suited for assessing systems from multiple perspectives, such as:

### • Design

To evaluate system design capability for meeting user specifications and safety standards, and to identify weaknesses in systems

### Physical & Operational Environments

To evaluate the environment for assuring that the system is appropriately situated, supported, serviced and contained.

#### Operational & Procedural Controls

To evaluate engineered controls (ex: automation), sequences of operations, procedural controls (ex: human interactions), etc., and to assess various operational modes, including start-up, standby, normal operation, steady and unsteady states, normal shutdown, emergency, and shutdown